浅谈 PHP 中的多种加密技术及代码示例

澳门新葡亰网址 1

同样是一道面试答错的问题,面试官问我非对称加密算法中有哪些经典的算法?
当时我愣了一下,因为我把非对称加密与单项散列加密的概念弄混淆了,所以更不用说什么非对称加密算法中有什么经典算法,结果当然也让面试官愣了一下,所以今天就花点时间说说PHP中的信息加密技术

1.Base64编码算法

信息加密技术的分类

Base64简介

Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法。可查看RFC2045~RFC2049,上面有MIME的详细规范。

Base64编码是从二进制到字符的过程,可用于在HTTP环境下传递较长的标识信息。例如,在Java
Persistence系统Hibernate中,就采用了Base64来将一个较长的唯一标识符(一般为128-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP
GET
URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base64编码具有不可读性,需要解码后才能阅读。

码表

索引 编码 索引 编码 索引 编码 索引 编码
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w
15 P 32 g 49 x
16 Q 33 h 50 y

特点:加密原理简单

单项散列加密技术(不可逆的加密)

属于摘要算法,不是一种加密算法,作用是把任意长的输入字符串变化成固定长的输出串的一种函数

Base64实现

一般的来说加密数据需要使用到如下三个包
JDK:java.security
CC: Commons Codec
BC: Bouncy Castle

MD5

string md5 ( string $str [, bool $raw_output = false ] ); //MD5加密,输入任意长度字符串返回一个唯一的32位字符

md5()为单向加密,没有逆向解密算法,但是还是可以对一些常见的字符串通过收集,枚举,碰撞等方法破解;所以为了让其破解起来更麻烦一些,所以我们一般加一点盐值(salt)并双重MD5;

md5(md5($password).'sdva');

sdva就是盐值,该盐值应该是随机的,比如md5常用在密码加密上,所以在注册的时候我会随机生成这个字符串,然后通过上面的方法来双重加密一下;

JDK实现

JDK 1.7写法

//加密
public static String jdkBase64Encoder(String str){
    BASE64Encoder encoder = new BASE64Encoder();
    return encoder.encode(str.getBytes());
}
//解密
public static String jdkBase64decoder(String str) throws IOException {
    BASE64Decoder decoder = new BASE64Decoder();
    return new String(decoder.decodeBuffer(str));
}
//调用
public static void main(String[] args) throws IOException {
    System.out.println("原始字符串: " + BASE_STRING);
    String enStr = jdkBase64Encoder(BASE_STRING);
    System.out.println("Base64编码后: " + enStr);
    String deStr = jdkBase64decoder(enStr);
    System.out.println("Base64解码后: "+deStr);
}

结果

原始字符串: security base64
Base64编码后: c2VjdXJpdHkgYmFzZTY0
Base64解码后: security base64

JDK1.8+写法

public static String jdkBase64Encoder(String str){
    String desc = Base64.getEncoder().encodeToString(str.getBytes(StandardCharsets.UTF_8));  
    System.out.println("加密后的字符串为:"+desc);  
}

public static String jdkBase64decoder(String str) throws IOException {
    String unDecodeStr=new String(Base64.getDecoder().decode(str),StandardCharsets.UTF_8);  
    System.out.println("解密后的字符串为"+unDecodeStr);  
}

Crypt

很少看到有人用这个函数,如果要用的话有可能是用在对称或非对称的算法里面,了解一下既可;

string crypt ( string $str [, string $salt ] ) //第一个为需要加密的字符串,第二个为盐值(就是加密干扰值,如果没有提供,则默认由PHP自动生成);返回散列后的字符串或一个少于 13 字符的字符串,后者为了区别盐值

<?php
$password='testtest.com';
echo crypt($password);
//输出:$1$DZ3.QX2.$CQZ8I.OfeepKYrWp0oG8L1
/*第二个$与第三个$之间的八个字符是由PHP生成的,每刷新一次就变一次
*/
echo "<hr>";

echo crypt($password,"testtest");
//输出:tesGeyALKYm3A
//当我们要加自定义的盐值时,如例子中的testtest作为第二个参数直接加入, 超出两位字符的会截取前两位
echo "<hr>";

echo  crypt($password,'$1$testtest$');
//输出:$1$testtest$DsiRAWGTHiVH3O0HSHGoL1
/*crypt加密函数有多种盐值加密支持,以上例子展示的是MD5散列作为盐值,该方式下
盐值以$1$$的形式加入,如例子中的testtest加在后两个$符之间,
超出八位字符的会截取前八位,总长为12位;crypt默认就是这种形式。
*/
echo "<hr>";
//crypt还有多种盐值加密支持,详见手册

Commons Codec实现

CC包的写法是简化了许多,类似JDK1.8的写法。
MAVEN依赖

<dependency>
    <groupId>commons-codec</groupId>
    <artifactId>commons-codec</artifactId>
    <version>1.10</version>
</dependency>

import org.apache.commons.codec.binary.Base64;

import java.io.IOException;

/**
 * CommonCodec Base64
 * @author yanlong
 */
public class CCBase64 {
    private static final String BASE_STRING ="security base64";

    public static void main(String[] args) throws IOException {
        System.out.println("原始字符串: " + BASE_STRING);
        byte[] encStr = Base64.encodeBase64(BASE_STRING.getBytes());
        System.out.println("Base64编码后: " + new String(encStr));
        String deStr = new String(Base64.encodeBase64(encStr));
        System.out.println("Base64解码后: "+deStr);
    }
}

Sha1加密:

string sha1 ( string $str [, bool $raw_output = false ]); //跟md5很像,不同的是sha1()默认情况下返回40个字符的散列值,传入参数性质一样,第一个为加密的字符串,第二个为raw_output的布尔值,默认为false,如果设置为true,sha1()则会返回原始的20 位原始格式报文摘要
<?php
$my_intro="zhouxiaogang";
echo sha1($my_intro); // b6773e8c180c693d9f875bcf77c1202a243e8594
echo "<hr>";
//当然,可以将多种加密算法混合使用
echo md5(sha1($my_intro));
//输出:54818bd624d69ac9a139bf92251e381d
//这种方式的双重加密也可以提高数据的安全性

Bouncy Castle实现

MAVEN依赖

<dependency>
    <groupId>org.bouncycastle</groupId>
    <artifactId>bcpkix-jdk15on</artifactId>
    <version>1.55</version>
</dependency>

import org.bouncycastle.util.encoders.Base64;

public class BCBase64 {
    private static final String BASE_STRING ="security base64";

    public static void main(String[] args) {
        System.out.println("原始字符串: " + BASE_STRING);
        byte[] encStr = Base64.encode(BASE_STRING.getBytes());
        System.out.println("Base64编码后: " + new String(encStr));
        String deStr = new String(Base64.decode(encStr));
        System.out.println("Base64解码后: "+deStr);

    }
}

BC的调用代码相较于CC和JDK更少了。

非对称加密

非对称加密算法需要两个密钥来进行加密和解密,这两个秘钥是公开密钥(public
key,简称公钥)和私有密钥(private key,简称私钥);

澳门新葡亰网址 1

如图所示,甲乙之间使用非对称加密的方式完成了重要信息的安全传输。

  1. 乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。
  2. 得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。
  3. 乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。

在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文
同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。

在非对称加密中使用的主要算法有:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。 其中我们最见的算法是RSA算法

以下是从网上摘抄的一段PHP通过openssl实现非对称加密的算法

<?php
/**
 * 使用openssl实现非对称加密
 * @since 2010-07-08
 */
class Rsa {
    /**
     * private key
     */
    private $_privKey;
    /**
     * public key
     */
    private $_pubKey;
    /**
     * the keys saving path
     */
    private $_keyPath;
    /**
     * the construtor,the param $path is the keys saving path
     */
    public function __construct($path) {
        if (empty($path) || !is_dir($path)) {
            throw new Exception('Must set the keys save path');
        }
        $this->_keyPath = $path;
    }
    /**
     * create the key pair,save the key to $this->_keyPath
     */
    public function createKey() {
        $r = openssl_pkey_new();
        openssl_pkey_export($r, $privKey);
        file_put_contents($this->_keyPath . DIRECTORY_SEPARATOR . 'priv.key', $privKey);
        $this->_privKey = openssl_pkey_get_public($privKey);
        $rp = openssl_pkey_get_details($r);
        $pubKey = $rp['key'];
        file_put_contents($this->_keyPath . DIRECTORY_SEPARATOR . 'pub.key', $pubKey);
        $this->_pubKey = openssl_pkey_get_public($pubKey);
    }
    /**
     * setup the private key
     */
    public function setupPrivKey() {
        if (is_resource($this->_privKey)) {
            return true;
        }
        $file = $this->_keyPath . DIRECTORY_SEPARATOR . 'priv.key';
        $prk = file_get_contents($file);
        $this->_privKey = openssl_pkey_get_private($prk);
        return true;
    }
    /**
     * setup the public key
     */
    public function setupPubKey() {
        if (is_resource($this->_pubKey)) {
            return true;
        }
        $file = $this->_keyPath . DIRECTORY_SEPARATOR . 'pub.key';
        $puk = file_get_contents($file);
        $this->_pubKey = openssl_pkey_get_public($puk);
        return true;
    }
    /**
     * encrypt with the private key
     */
    public function privEncrypt($data) {
        if (!is_string($data)) {
            return null;
        }
        $this->setupPrivKey();
        $r = openssl_private_encrypt($data, $encrypted, $this->_privKey);
        if ($r) {
            return base64_encode($encrypted);
        }
        return null;
    }
    /**
     * decrypt with the private key
     */
    public function privDecrypt($encrypted) {
        if (!is_string($encrypted)) {
            return null;
        }
        $this->setupPrivKey();
        $encrypted = base64_decode($encrypted);
        $r = openssl_private_decrypt($encrypted, $decrypted, $this->_privKey);
        if ($r) {
            return $decrypted;
        }
        return null;
    }
    /**
     * encrypt with public key
     */
    public function pubEncrypt($data) {
        if (!is_string($data)) {
            return null;
        }
        $this->setupPubKey();
        $r = openssl_public_encrypt($data, $encrypted, $this->_pubKey);
        if ($r) {
            return base64_encode($encrypted);
        }
        return null;
    }
    /**
     * decrypt with the public key
     */
    public function pubDecrypt($crypted) {
        if (!is_string($crypted)) {
            return null;
        }
        $this->setupPubKey();
        $crypted = base64_decode($crypted);
        $r = openssl_public_decrypt($crypted, $decrypted, $this->_pubKey);
        if ($r) {
            return $decrypted;
        }
        return null;
    }
    public function __destruct() {
        @fclose($this->_privKey);
        @fclose($this->_pubKey);
    }
}
//以下是一个简单的测试demo,如果不需要请删除
$rsa = new Rsa('ssl-key');
//私钥加密,公钥解密
echo 'source:我是老鳖<br />';
$pre = $rsa->privEncrypt('我是老鳖');
echo 'private encrypted:<br />' . $pre . '<br />';
$pud = $rsa->pubDecrypt($pre);
echo 'public decrypted:' . $pud . '<br />';
//公钥加密,私钥解密
echo 'source:干IT的<br />';
$pue = $rsa->pubEncrypt('干IT的');
echo 'public encrypt:<br />' . $pue . '<br />';
$prd = $rsa->privDecrypt($pue);
echo 'private decrypt:' . $prd;
?>

2.消息摘要算法(Message-Digest Algorithm)及其实现

对称加密算法

对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的,所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性至关重要。

对称加密的常用算法有:
DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法

在PHP中也有封装好的对称加密函数

MD算法简介

消息摘要算法的主要特征是加密过程不需要密钥,并且经过加密的数据无法被解密,只有输入相同的明文数据经过相同的消息摘要算法才能得到相同的密文。消息摘要算法不存在密钥的管理与分发问题,适合于分布式网络上使用。由于其加密计算的工作量相当巨大,所以以前的这种算法通常只用于数据量有限的情况下的加密,例如计算机的口令就是用不可逆加密算法加密的。近年来,随着计算机性能的飞速改善,加密速度不再成为限制这种加密技术发展的桎梏,因而消息摘要算法应用的领域不断增加。

消息摘要算法主要应用在数字签名领域,作为对明文的摘要算法。著名的摘要算法有RSA公司的MD5算法和SHA-1算法及其大量的变体。

特点:单向加密,长度统一

Urlencode/Urldecode

string urlencode ( string $str ) 
/*
1. 一个参数,传入要加密的字符串(通常应用于对URL的加密)
2. urlencode为双向加密,可以用urldecode来加密(严格意义上来说,不算真正的加密,更像是一种编码方式)
3. 返回字符串,此字符串中除了 -_. 之外的所有非字母数字字符都将被替换成百分号(%)后跟两位十六进制数,空格则编码为加号(+)。
*/

通过Urlencode函数解决链接中带有&字符引起的问题:

<?php
$pre_url_encode="zhougang.com?username=zhougang&password=zhou"; //在实际开发中,我们很多时候要构造这种URL,这是没有问题的
$url_decode    ="zhougang.com?username=zhou&gang&password=zhou";//但是这种情况下用$_GET()来接受是会出问题的;
/*
Array
(
  [username] => zhou
  [gang] => 
  [password] => zhou
)
 */

//如下解决问题:
$username="zhou&gang";
$url_decode="zhougang.com?username=".urlencode($username)."&password=zhou";
?>

常见的urlencode()的转换字符

?=> %3F
= => %3D
% => %25
& => %26
 => %5C

MD算法实现

一般的加密算法实现通过两个包实现
JDK:java.security
BC: Bouncy Castle

base64

string base64_decode ( string $encoded_data )
  1. base64_encode()接受一个参数,也就是要编码的数据(这里不说字符串,是因为很多时候base64用来编码图片)
  2. base64_encode()为双向加密,可用base64_decode()来解密

$data=file_get_contents($filename);
echo base64_encode($data);
/*然后你查看网页源码就会得到一大串base64的字符串,
再用base64_decode()还原就可以得到图片。这也可以作为移动端上传图片的处理方案之一(但是不建议这样做哈)
*/

严格的来说..这两个函数其实不算是加密,更像是一种格式的序列化

以下是我们PHP程序中常用到的对称加密算法

1.MD2

public static void jdkMD2(String str) throws NoSuchAlgorithmException {
    MessageDigest messageDigest = MessageDigest.getInstance("MD2");
    byte[] enStr = messageDigest.digest(str.getBytes());
    //将二进制转换为16进制输出
    System.out.println("JDK的MD2摘要:"+new String(Hex.encodeHex(enStr)));
}

discuz经典算法

<?php
function authcode($string, $operation = 'DECODE', $key = '', $expiry = 0) {   
    // 动态密匙长度,相同的明文会生成不同密文就是依靠动态密匙   
    $ckey_length = 4;   

    // 密匙   
    $key = md5($key ? $key : $GLOBALS['discuz_auth_key']);   

    // 密匙a会参与加解密   
    $keya = md5(substr($key, 0, 16));   
    // 密匙b会用来做数据完整性验证   
    $keyb = md5(substr($key, 16, 16));   
    // 密匙c用于变化生成的密文   
    $keyc = $ckey_length ? ($operation == 'DECODE' ? substr($string, 0, $ckey_length): 
substr(md5(microtime()), -$ckey_length)) : '';   
    // 参与运算的密匙   
    $cryptkey = $keya.md5($keya.$keyc);   
    $key_length = strlen($cryptkey);   
    // 明文,前10位用来保存时间戳,解密时验证数据有效性,10到26位用来保存$keyb(密匙b), 
//解密时会通过这个密匙验证数据完整性   
    // 如果是解码的话,会从第$ckey_length位开始,因为密文前$ckey_length位保存 动态密匙,以保证解密正确   
    $string = $operation == 'DECODE' ? base64_decode(substr($string, $ckey_length)) :  
sprintf('%010d', $expiry ? $expiry + time() : 0).substr(md5($string.$keyb), 0, 16).$string;   
    $string_length = strlen($string);   
    $result = '';   
    $box = range(0, 255);   
    $rndkey = array();   
    // 产生密匙簿   
    for($i = 0; $i <= 255; $i++) {   
        $rndkey[$i] = ord($cryptkey[$i % $key_length]);   
    }   
    // 用固定的算法,打乱密匙簿,增加随机性,好像很复杂,实际上对并不会增加密文的强度   
    for($j = $i = 0; $i < 256; $i++) {   
        $j = ($j + $box[$i] + $rndkey[$i]) % 256;   
        $tmp = $box[$i];   
        $box[$i] = $box[$j];   
        $box[$j] = $tmp;   
    }   
    // 核心加解密部分   
    for($a = $j = $i = 0; $i < $string_length; $i++) {   
        $a = ($a + 1) % 256;   
        $j = ($j + $box[$a]) % 256;   
        $tmp = $box[$a];   
        $box[$a] = $box[$j];   
        $box[$j] = $tmp;   
        // 从密匙簿得出密匙进行异或,再转成字符   
        $result .= chr(ord($string[$i]) ^ ($box[($box[$a] + $box[$j]) % 256]));   
    }   
    if($operation == 'DECODE') {  
        // 验证数据有效性,请看未加密明文的格式   
        if((substr($result, 0, 10) == 0 || substr($result, 0, 10) - time() > 0) &&  
substr($result, 10, 16) == substr(md5(substr($result, 26).$keyb), 0, 16)) {   
            return substr($result, 26);   
        } else {   
            return '';   
        }   
    } else {   
        // 把动态密匙保存在密文里,这也是为什么同样的明文,生产不同密文后能解密的原因   
        // 因为加密后的密文可能是一些特殊字符,复制过程可能会丢失,所以用base64编码   
        return $keyc.str_replace('=', '', base64_encode($result));   
    }   
}

2.MD4

public static void BCMD4(String str) throws NoSuchAlgorithmException {
    Digest digest = new MD4Digest();
    byte[] b = str.getBytes();
    digest.update(b,0,b.length);
    byte[] enStr = new byte[digest.getDigestSize()];
    digest.doFinal(enStr,0);
    //将二进制转换为16禁止输出
    System.out.println("B C的MD4摘要:"+new String(org.bouncycastle.util.encoders.Hex.toHexString(enStr)));
}

加解密函数encrypt()

<?php
//$string:需要加密解密的字符串;$operation:判断是加密还是解密,E表示加密,D表示解密;$key:密匙
function encrypt($string,$operation,$key=''){ 
    $key=md5($key); 
    $key_length=strlen($key); 
      $string=$operation=='D'?base64_decode($string):substr(md5($string.$key),0,8).$string; 
    $string_length=strlen($string); 
    $rndkey=$box=array(); 
    $result=''; 
    for($i=0;$i<=255;$i++){ 
           $rndkey[$i]=ord($key[$i%$key_length]); 
        $box[$i]=$i; 
    } 
    for($j=$i=0;$i<256;$i++){ 
        $j=($j+$box[$i]+$rndkey[$i])%256; 
        $tmp=$box[$i]; 
        $box[$i]=$box[$j]; 
        $box[$j]=$tmp; 
    } 
    for($a=$j=$i=0;$i<$string_length;$i++){ 
        $a=($a+1)%256; 
        $j=($j+$box[$a])%256; 
        $tmp=$box[$a]; 
        $box[$a]=$box[$j]; 
        $box[$j]=$tmp; 
        $result.=chr(ord($string[$i])^($box[($box[$a]+$box[$j])%256])); 
    } 
    if($operation=='D'){ 
        if(substr($result,0,8)==substr(md5(substr($result,8).$key),0,8)){ 
            return substr($result,8); 
        }else{ 
            return''; 
        } 
    }else{ 
        return str_replace('=','',base64_encode($result)); 
    } 
}
?>

3.MD5

BC实现

public static void BCMD5(String str) throws NoSuchAlgorithmException {
      Digest digest = new MD5Digest();
      byte[] b = str.getBytes();
      digest.update(b,0,b.length);
      byte[] enStr = new byte[digest.getDigestSize()];
      digest.doFinal(enStr,0);
      //将二进制转换为16禁止输出
      System.out.println("B C的MD5摘要:"+new String(org.bouncycastle.util.encoders.Hex.toHexString(enStr)));
  }

JDK实现

public static void jdkMD5(String str) throws NoSuchAlgorithmException {
    MessageDigest messageDigest = MessageDigest.getInstance("MD5");
    byte[] enStr = messageDigest.digest(str.getBytes());
    //将二进制转换为16进制输出
    System.out.println("JDK的MD5摘要:"+Hex.encodeHex(enStr));
}

调用

public static void main(String[] args) throws NoSuchAlgorithmException {
    BCMD4(BASE_STRING);
    BCMD5(BASE_STRING);
    jdkMD2(BASE_STRING);
    jdkMD5(BASE_STRING);
}

结果

B C的MD4摘要:28427b7d90e25002467da60396b79a94
B C的MD5摘要:6ddee10117cee5ef77cae7e747385ee2
JDK的MD2摘要:3cce751973fd1c6957b4d60bbf0d9153
JDK的MD5摘要:6ddee10117cee5ef77cae7e747385ee2

4.SHA

一般的加密算法实现通过两个包实现
JDK:java.security
BC: Bouncy Castle
CC一般是对JDK简化操作

SHA-1

JDK实现

public static void jdkSHA1(String str) throws NoSuchAlgorithmException {
   MessageDigest messageDigest = MessageDigest.getInstance("SHA");
   byte[] enStr = messageDigest.digest(str.getBytes());
   //将二进制转换为16进制输出
   System.out.println("JDK的SHA摘要:"+new String(Hex.encodeHex(enStr)));
}

BC实现

public static void BCSHA1(String str) throws NoSuchAlgorithmException {
      Digest digest = new SHA1Digest();
      byte[] b = str.getBytes();
      digest.update(b,0,b.length);
      byte[] enStr = new byte[digest.getDigestSize()];
      digest.doFinal(enStr,0);
      //将二进制转换为16禁止输出
      System.out.println("B C的SHA1摘要:"+new String(org.bouncycastle.util.encoders.Hex.toHexString(enStr)));
  }

CC实现

public static void CCSHA1(String str){
    String enStr = DigestUtils.sha1Hex(BASE_STRING.getBytes());
    System.out.println("C C的SHA1摘要:"+enStr);

}
SHA224

BC单独实现

public static void BCSHA224(String str) throws NoSuchAlgorithmException {
    Digest digest = new SHA224Digest();
    byte[] b = str.getBytes();
    digest.update(b,0,b.length);
    byte[] enStr = new byte[digest.getDigestSize()];
    digest.doFinal(enStr,0);
    //将二进制转换为16禁止输出
    System.out.println("B C的SHA224摘要:"+new String(org.bouncycastle.util.encoders.Hex.toHexString(enStr)));
}

澳门新葡亰网址,JDK实现与BC配合实现

public static void jdkAndBCSHA224(String str) throws NoSuchAlgorithmException {
    Security.addProvider(new BouncyCastleProvider());
    MessageDigest messageDigest = MessageDigest.getInstance("SHA224");
    byte[] enStr = messageDigest.digest(str.getBytes());
    //将二进制转换为16禁止输出
    System.out.println("JDK+BC的SHA224摘要:"+new String(Hex.encodeHex(enStr)));
}

调用

public static void main(String[] args) throws NoSuchAlgorithmException {
    jdkSHA1(BASE_STRING);
    BCSHA1(BASE_STRING);
    CCSHA1(BASE_STRING);
    BCSHA224(BASE_STRING);
    jdkAndBCSHA224(BASE_STRING);
}

结果

JDK的SHA1摘要:4a6db077ec2ea85697bfe5e97feffed7616dda96
B C的SHA1摘要:4a6db077ec2ea85697bfe5e97feffed7616dda96
C C的SHA1摘要:4a6db077ec2ea85697bfe5e97feffed7616dda96
B C的SHA224摘要
:f86ded290c11f45253ba0a47c30a23ab7121721e76f8dc071aee98cc
JDK+BC的SHA224摘要:f86ded290c11f45253ba0a47c30a23ab7121721e76f8dc071aee98cc

MAC 加秘钥的摘要算法

JDK实现

public static void jdkHmacMD5(String str) throws Exception {
    //初始化 KeyGenerator
    KeyGenerator keyGenerator = KeyGenerator.getInstance("HmacMD5");
    //生成秘钥
    SecretKey secretKey = keyGenerator.generateKey();
    //获取秘钥
    byte[] key = secretKey.getEncoded();

    //还原秘钥
    SecretKeySpec secretKeySpec = new SecretKeySpec(key, "HmacMD5");
    //获取mac实例 初始化MAC
    Mac mac = Mac.getInstance(secretKeySpec.getAlgorithm());
    mac.init(secretKey);
    //执行摘要算法
    byte[] encBytes = mac.doFinal(str.getBytes());
    System.out.println(Hex.toHexString(encBytes));
}

BC实现

public static void BCHmacMD5(String str){

    HMac hMac = new HMac(new MD5Digest());
    hMac.init(new KeyParameter(Hex.decode("aaaaaaaaaa")));
    hMac.update(str.getBytes(),0,str.getBytes().length);
    byte[] hmacMD5 = new byte[hMac.getMacSize()];
    hMac.doFinal(hmacMD5,0);
    System.out.println(Hex.toHexString(hmacMD5));

}

3.对称加密算法(Symmetric-key algorithm)

对称加密算法(Symmetric-key algorithm)简介

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。

对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的,所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信的安全性至关重要。

特点:解密加密使用相同秘钥,计算量小,算法简单,加密效率高

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图